拥有 机器学习 标签的文章 共 49 条数据

推荐系统:技术、评估及高效算法 [美]Francesco Ricci著 李艳民译 PDF下载
编程书籍

推荐系统:技术、评估及高效算法 [美]Francesco Ricci著 李艳民译 PDF下载

501次浏览 0条评论

推荐系统是为用户推荐所需物品的软件工具和技术,对于在线处理信息过载是一个非常有价值的方法,并成为电子商务领域最强大和流行的工具之一。本书融合不同领域专家学者的理论成果和实践经验,从推荐系统相关技术、推荐系统的应用与评估、推荐系统的交互、推荐系统和社区及高级算法5个方面介绍推荐系统的主要概念、理论、方法、趋势、挑战和应用,详细阐释如何支持用户决策、计划和购买过程,帮助你梳理推荐系统的相关知识体系,并理解推荐系统的原理、算法及实现。推荐序一 推荐序二 译者序 前言 第1章 概述 1 1.1 简介 1 1.2 推荐系统的功能 3 1.3 数据和知识资源 5 1.4 推荐技术 7 1.5 应用与评价 10 1.6 推荐系统与人机交互 12 1.6.1 信任、解释和说服力 13 1.6.2 会话系统 13 1.6.3 可视化 14 1.7 推荐系统是个交叉学科领域 15 1.8 出现的问题和挑战 16 1.8.1 本书对出现的问题的讨论 16 1.8.2 挑战 18 参考文献 20 第一部分 基础技术 第2章 推荐系统中的数据挖掘方法 28 2.1 简介 28 2.2 数据预处理 29 2.2.

图像处理、分析与机器视觉(第4版) 桑卡 (Milan Sonka)著 PDF下载
编程书籍

图像处理、分析与机器视觉(第4版) 桑卡 (Milan Sonka)著 PDF下载

353次浏览 0条评论

本书是英文第4版的中文翻译,大约有五分之一的内容更新。主要更新的内容包括:增加了一些最新的算法,增加了习题部分,重写了部分内容。更为具体的内容更新请参考作者序。 本书是在第3版中文翻译的基础上,按照直译的原则进行翻译的,与英文版形成完全的对照。对于英文版中明显存在的排印或疏忽类的错误,都进行了更正。由于这些错误一般都很明显,因此译文中没有专门声明,读者如果对照英文版,不难看出其出处。第1章 引言 1第2章 图像及其表达与性质 9第3章 图像及其数学与物理背景 37第4章 图像分析的数据结构 73第5章 图像预处理 85第6章 分割Ⅰ 130第7章 分割Ⅱ 185第8章 形状表示与描述 237第9章 物体识别 278第10章 图像理解 335第11章 3D几何,对应,从亮度到3D 419第12章 3D视觉的应用 464第13章 数学形态学 493第14章 图像数据压缩 520第15章 纹理 537第16章 运动分析 566

图像处理、分析与机器视觉(第4版) 桑卡 (Milan Sonka)著 PDF下载
编程书籍

图像处理、分析与机器视觉(第4版) 桑卡 (Milan Sonka)著 PDF下载

428次浏览 0条评论

本书是英文第4版的中文翻译,大约有五分之一的内容更新。主要更新的内容包括:增加了一些最新的算法,增加了习题部分,重写了部分内容。更为具体的内容更新请参考作者序。 本书是在第3版中文翻译的基础上,按照直译的原则进行翻译的,与英文版形成完全的对照。对于英文版中明显存在的排印或疏忽类的错误,都进行了更正。由于这些错误一般都很明显,因此译文中没有专门声明,读者如果对照英文版,不难看出其出处。第1章 引言 1第2章 图像及其表达与性质 9第3章 图像及其数学与物理背景 37第4章 图像分析的数据结构 73第5章 图像预处理 85第6章 分割Ⅰ 130第7章 分割Ⅱ 185第8章 形状表示与描述 237第9章 物体识别 278第10章 图像理解 335第11章 3D几何,对应,从亮度到3D 419第12章 3D视觉的应用 464第13章 数学形态学 493第14章 图像数据压缩 520第15章 纹理 537第16章 运动分析 566

机器学习导论(原书第2版) [土耳其] Ethem Alpaydin著 范明译 PDF下载
编程书籍

机器学习导论(原书第2版) [土耳其] Ethem Alpaydin著 范明译 PDF下载

573次浏览 0条评论

全面讨论机器学习方法和技术,层次合理、叙述清晰、难度适中。涵盖了经典的机器学习算法和理论,同时补充了近年来新出现的机器学习方法。最佳的机器学习入门教材。《机器学习导论(原书第2版)》讨论了机器学习在统计学、模式识别、神经网络、人工智能、信号处理等不同领域的应用,其中涵盖了监督学习、贝叶斯决策理论、参数方法、多元方法、多层感知器、局部模型、隐马尔可夫模型、分类算法评估和比较以及增强学习。《机器学习导论(原书第2版)》可供完成计算机程序设计、概率论、微积分和线性代数课程的高年级本科生和研究生使用,也可供对机器学习感兴趣的工程技术人员参考。Introduction to Machine Learning,Second Edition 出版者的话 中文版序 译者序 前言 致谢 关于第2版 符号表 第1章 绪论1 1.1 什么是机器学习1 1.2 机器学习的应用实例3 1.2.1 学习关联性3 1.2.2 分类3 1.2.3 回归6 1.2.4 非监督学习7 1.2.5 增强学习8 1.3 注释8 1.4 相关资源10 1.5 习题11 1.6 参考文献12 第2章 监督学习13 2.1 由实例

机器学习系统设计:Python语言实现 [美] 戴维·朱利安(David Julian)著 李洋译 PDF下载
编程书籍

机器学习系统设计:Python语言实现 [美] 戴维·朱利安(David Julian)著 李洋译 PDF下载

526次浏览 0条评论

本书介绍了机器学习系统设计的整个过程,以及相关的Python库,并在各个知识环节中都给出了Python示例,为设计高效机器学习系统提供详实指南。本书共9章,第1章介绍机器学习的设计原理和相关模型;第2章讲解Python中众多针对机器学习任务的程序包;第3章涵盖大数据、数据属性、数据源、数据处理和分析等主题,介绍基本的数据类型、结构和属性;第4章探索最常见的机器学习模型,即逻辑模型、树状模型和规则模型;第5章研究机器学习最常用的技术,创建线性回归和Logistic回归的假设语句;第6章介绍人工神经网络算法;第7章讨论特征的不同类型,即定量特征、有序特征和分类特征,以及如何结构化和变换特征;第8章介绍主要的集成方法及其在Scikit-learn中的实现;第9章介绍模型选择和参数调优技术,并将这些技术应用于一些案例研究之中。CONTENTS 目录 译者序 前言 第1章 机器学习的思维1 1.1 人机界面1 1.2 设计原理4 1.2.1 问题的类型6 1.2.2 问题是否正确7 1.2.3 任务8 1.2.4 统一建模语言27 1.3 总结31 第2章 工具和技术32 2.1 Python与

深入浅出Python机器学习 段小手著 PDF下载
编程书籍

深入浅出Python机器学习 段小手著 PDF下载

442次浏览 0条评论

机器学习正在迅速改变我们的世界。我们几乎每天都会读到机器学习如何改变日常的生活。如果你在淘宝或者京东这样的电子商务网站购买商品,或者在爱奇艺或是腾讯视频这样的视频网站观看节目,甚至只是进行一次百度搜索,就已经触碰到了机器学习的应用。使用这些服务的用户会产生数据,这些数据会被收集,在进行预处理之后用来训练模型,而模型会通过这些数据来提供更好的用户体验。此外,目前还有很多使用机器学习技术的产品或服务即将在我们的生活当中普及,如能够解放双手的无人驾驶汽车、聪明伶俐的智能家居产品、善解人意的导购机器人等。可以说要想深入机器学习的应用开发当中,现在就是一个非常理想的时机。本书内容涵盖了有监督学习、无监督学习、模型优化、自然语言处理等机器学习领域所必须掌握的知识,从内容结构上非常注重知识的实用性和可操作性。全书采用由浅入深、循序渐进的讲授方式,完全遵循和尊重初学者对机器学习知识的认知规律。本书适合有一定程序设计语言和算法基础的读者学习使用。目 录 第1章 概 述 1.1 什么是机器学习——从一个小故事开始 / 002 1.2 机器学习的一些应用场景——蝙蝠公司的业务单元 / 003 1.3 机器学

深入浅出强化学习:原理入门 郭宪著 PDF下载
编程书籍

深入浅出强化学习:原理入门 郭宪著 PDF下载

555次浏览 1条评论

《深入浅出强化学习:原理入门》用通俗易懂的语言深入浅出地介绍了强化学习的基本原理,覆盖了传统的强化学习基本方法和当前炙手可热的深度强化学习方法。开篇从最基本的马尔科夫决策过程入手,将强化学习问题纳入到严谨的数学框架中,接着阐述了解决此类问题最基本的方法——动态规划方法,并从中总结出解决强化学习问题的基本思路:交互迭代策略评估和策略改善。基于这个思路,分别介绍了基于值函数的强化学习方法和基于直接策略搜索的强化学习方法。最后介绍了逆向强化学习方法和近年具有代表性、比较前沿的强化学习方法。除了系统地介绍基本理论,书中还介绍了相应的数学基础和编程实例。因此,《深入浅出强化学习:原理入门》既适合零基础的人员入门学习、也适合相关科研人员作为研究参考。1 绪论 1 1.1 这是一本什么书 1 1.2 强化学习可以解决什么问题 2 1.3 强化学习如何解决问题 4 1.4 强化学习算法分类及发展趋势 5 1.5 强化学习仿真环境构建 7 1.5.1 gym安装及简单的demo示例 8 1.5.2 深入剖析gym环境构建 10 1.6 本书主要内容及安排 12 第一篇 强化学习基础 17 2 马尔科夫决

推荐系统与深度学习 黄昕著 PDF下载
编程书籍

推荐系统与深度学习 黄昕著 PDF下载

661次浏览 0条评论

本书的内容设置由浅入深,从传统的推荐算法过渡到近年兴起的深度学习技术。不管是初学者,还是有一定经验的从业人员,相信都能从本书的不同章节中有所收获。 区别于其他推荐算法书籍,本书引入了已被实践证明效果较好的深度学习推荐技术,包括Word2Vec、Wide & Deep、DeepFM、GAN 等技术应用,并给出了相关的实践代码;除了在算法层面讲解推荐系统的实现,还从工程层面详细阐述推荐系统如何搭建.第1 章什么是推荐系统1 1.1 推荐系统的概念.1 1.1.1 推荐系统的基本概念1 1.1.2 深度学习与推荐系统4 第2 章深度神经网络.7 2.1 什么是深度学习.7 2.1.1 深度学习的三次兴起7 2.1.2 深度学习的优势9 2.2 神经网络基础11 2.2.1 神经元11 2.2.2 神经网络.12 2.2.3 反向传播.13 2.2.4 优化算法.14 2.3 卷积网络基础17 2.3.1 卷积层17 2.3.2 池化层19 2.3.3 常见的网络结构19 2.4 循环网络基础21 2.4.1 时序反向传播算法22 2.4.2 长短时记忆网络24 2.5 生成对抗基础25 2.

解析深度学习:卷积神经网络原理与视觉实践 魏秀参著 PDF下载
编程书籍

解析深度学习:卷积神经网络原理与视觉实践 魏秀参著 PDF下载

822次浏览 0条评论

深度学习,特别是深度卷积神经网络是人工智能的重要分支领域,卷积神经网络技术也被广泛应用于各种现实场景,在许多问题上都取得了超越人类智能的结果。本书作为该领域的入门书籍,在内容上涵盖深度卷积神经网络的基础知识和实践应用两大方面。《解析深度学习:卷积神经网络原理与视觉实践》共14 章,分为三个部分:第一部分为绪论;第二部分 (第1~4 章)介绍卷积神经网络的基础知识、基本部件、经典结构和模型压缩等基础理论内容;第三部分(第5~14 章)介绍深度卷积神经网络自数据准备开始,到模型参数初始化、不同网络部件的选择、网络配置、网络模型训练、不平衡数据处理,最终到模型集成等实践应用技巧和经验。《解析深度学习:卷积神经网络原理与视觉实践》并不是一本编程类书籍,而是希望通过“基础知识”和“实践技巧”两方面使读者从更高维度了解、掌握并成功构建针对自身应用问题的深度卷积神经网络。《解析深度学习:卷积神经网络原理与视觉实践》可作为深度学习和卷积神经网络爱好者的入门书籍,也可供没有机器学习背景但希望能快速掌握该方面知识并将其应用于实际问题的各行从业者阅读参考。第一部分绪论1 0.1 引言 . 2 0.2 什么是

概率图模型:原理与技术 [美]Daphne Koller著 王飞跃译 PDF下载
编程书籍

概率图模型:原理与技术 [美]Daphne Koller著 王飞跃译 PDF下载

1677次浏览 0条评论

概率图模型将概率论与图论相结合,是当前非常热门的一个机器学习研究方向。本书详细论述了有向图模型(又称贝叶斯网)和无向图模型(又称马尔可夫网)的表示、推理和学习问题,全面总结了人工智能这一前沿研究领域的最新进展。为了便于读者理解,书中包含了大量的定义、定理、证明、算法及其伪代码,穿插了大量的辅助材料,如示例(examples)、技巧专栏(skill boxes)、实例专栏(case study boxes)、概念专栏(concept boxes)等。另外,在第 2章介绍了概率论和图论的核心知识,在附录中介绍了信息论、算法复杂性、组合优化等补充材料,为学习和运用概率图模型提供了完备的基础。本书可作为高等学校和科研单位从事人工智能、机器学习、模式识别、信号处理等方向的学生、教师和研究人员的教材和参考书。== 序 言 ==很高兴能够看到我们所著的《概率图模型》一书被翻译为中文出版。我们了解到这本书涵盖的课题已在中国引起了巨大的兴趣。已有众多中国读者写信向我们解释这本书对于他们的学习的重要性,并希望获得更易理解的版本。随着众多来自中国研究机构或国外研究机构的中国学者署名或共同署名的文章的发表,中

深度卷积网络:原理与实践 彭博著 PDF下载
编程书籍

深度卷积网络:原理与实践 彭博著 PDF下载

402次浏览 0条评论

深度卷积网络(DCNN)是目前十分流行的深度神经网络架构,它的构造清晰直观,效果引人入胜,在图像、视频、语音、语言领域都有广泛应用。本书以AI领域新的技术研究和和实践为基础,从技术理论、工作原理、实践方法、架构技巧、训练方法、技术前瞻等6个维度对深度卷积网络进行了系统、深入、详细地讲解。以实战为导向,深入分析AlphaGo和GAN的实现过程、技术原理、训练方法和应用细节,为读者依次揭开神经网络、卷积网络和深度卷积网络的神秘面纱,让读者了解AI的“思考过程”,以及与人类思维的相同和不同之处。本书在逻辑上分为3个部分:第一部分 综述篇(第1、6、9章)这3章不需要读者具备编程和数学基础,对深度学习和神经网络的基础知识、AlphaGo的架构设计和工作原理,以及深度学习和人工智能未来的技术发展趋势进行了宏观介绍。第二部分 深度卷积网络篇(第2、3、4、5章)结合作者的实际工作经验和案例代码,对深度卷积网络的技术理论、工作原理、实践方法、架构技巧和训练方法做了系统而深入的讲解。第三部分 实战篇(第7、8章)详细分析了AlphaGo和GAN的技术原理、训练方法和应用细节,包括详细的代码分析和大量G

Python项目案例开发从入门到实战——爬虫、游戏和机器学习(从入门到实战·微课视频)郑秋生著 PDF下载
编程书籍

Python项目案例开发从入门到实战——爬虫、游戏和机器学习(从入门到实战·微课视频)郑秋生著 PDF下载

655次浏览 0条评论

本书以Python 3.5为编程环境,从基本的程序设计思想入手,逐步展开Python语言教学,是一本面向广大编程学习者的程序设计类图书。本书以案例带动知识点的讲解,将Python知识点分解到各个不同的案例,每个案例各有侧重点,同时展示实际项目的设计思想和设计理念,使读者可以举一反三。 本书案例具有实用性,例如校园网搜索引擎、小小翻译器、抓取百度图片这些爬虫案例略加修改可以应用到实际项目中;还有通过微信通信协议开发微信机器人、机器学习的文本分类、基于卷积神经网络的手写体识别等案例;另外是一些大家耳熟能详的游戏案例,例如连连看、推箱子、中国象棋、网络五子棋、两人麻将、人物拼图和飞机大战等游戏。通过本书,读者将掌握Python编程技术和技巧,学会面向对象的设计方法,了解程序设计的所有相关内容。本书不仅为读者列出了完整的代码,同时对所有的源代码都进行了非常详细的解释,通俗易懂、图文并茂。扫描每章提供的二维码可观看知识点的视频讲解。 本书适用于Python语言学习者、程序设计人员和游戏编程爱好者。第1章 Python基础知识 11.1 Python语言简介 11.2 Python语法基础 21.

白话深度学习与TensorFlow 高扬著 PDF下载
编程书籍

白话深度学习与TensorFlow 高扬著 PDF下载

552次浏览 0条评论

本书基本独立成册,适用于零基础的初学者。基础篇(第1~3章),讲解了机器学习、深度学习与实践的上下文知识,如基本的机器学习与深度学习算法,TensorFlow框架的安全与配置,简单的深度学习实践。该篇是阅读和实践的基石。原理与实践篇(第4~8章),介绍“老牌”的深度学习网络的数学原理和工程实现原理,尤其是第4章,如果能基本读懂,后面的网络实现层面的问题基本都可以迎刃而解。涵盖BP网络、CNN、RNN的结构、思路、训练与使用,以及一些常见的综合性问题。该篇是学习深度学习的重点和难点,作者通过大量示例、推理与实现,帮读者*大化降低学习曲线。扩展篇(第9~13章),介绍一些网络的变种和一些较新的网络特性,涵盖深度残差网络、受限玻尔兹曼机、强化学习、对抗学习,这是读者进一步学习与实践思路的钥匙。最后给出了一些有趣的深度学习应用:人脸识别、作诗姬、大师风图像处理,有趣又有用。第1章 机器学习是什么 2第2章 深度学习是什么 15第3章 TensorFlow框架特性与安装 38第4章 前馈神经网络 50第5章 手写板功能 81第6章 卷积神经网络 103第7章 综合问题 139第8章 循环神经网络

慕课网 OpenCV+TensorFlow 入门人工智能图像处理 完整视频教程下载
视频教程

慕课网 OpenCV+TensorFlow 入门人工智能图像处理 完整视频教程下载

708次浏览 0条评论

AI的火爆程度可以说是“妇孺皆知”,无论是“美颜”还是AR识别,身边越来越多的AI元素出现在我们的生活中,让我们的生活更加丰富多彩。在这次课程中,你可以通过丰富有趣的案例,来学习人工智能中的计算机视觉技术,迈上机器学习新台阶。第1章 课程导学包括课程概述、课程安排、学习前提等方面的介绍,让同学们对计算机视觉有所理解第2章 计算机视觉入门通过OpenCV以及TensorFlow两个方面介绍计算机入门的相关知识。OpenCV侧重点在于为大家补充图像处理的相关基础,如像素、文件封装格式、灰度等级、颜色通道等的概念。TensorFlow重点在于通过对常量、变量、矩阵等的介绍,学习并掌握TensorFlow的基本使用。...第3章 计算机视觉加强之几何变换本章节主要为大家介绍图像的几何变换。几何变换顾名思义就是对图片外形轮廓进行操作以适应不同的场景。如缩放、剪切、位移、镜像、旋转、仿射变换等。第4章 计算机视觉加强之图像特效&线段文字绘制视频滤镜也是目前在计算机算法处理上比较火的一个方向之一,在本章节中将结合灰度、底板、马赛克、毛玻璃、边缘检测、油画效果等为大家介绍视频滤镜的使用第5章 计算机视

深入浅出深度学习:原理剖析与Python实践 黄安埠著 PDF下载
编程书籍

深入浅出深度学习:原理剖析与Python实践 黄安埠著 PDF下载

424次浏览 0条评论

《深入浅出深度学习:原理剖析与Python实践》介绍了深度学习相关的原理与应用,全书共分为三大部分,第一部分主要回顾了深度学习的发展历史,以及Theano的使用;第二部分详细讲解了与深度学习相关的基础知识,包括线性代数、概率论、概率图模型、机器学习和最优化算法;在第三部分中,针对若干核心的深度学习模型,如自编码器、受限玻尔兹曼机、递归神经网络和卷积神经网络等进行详细的原理分析与讲解,并针对不同的模型给出相应的具体应用。《深入浅出深度学习:原理剖析与Python实践》适合有一定高等数学、机器学习和Python编程基础的在校学生、高校研究者或在企业中从事深度学习的工程师使用,书中对模型的原理与难点进行了深入分析,在每一章的最后都提供了详细的参考文献,读者可以对相关的细节进行更深入的研究。最后,理论与实践相结合,《深入浅出深度学习:原理剖析与Python实践》针对常用的模型分别给出了相应的应用,读者也可以在Github中下载和查看《深入浅出深度学习:原理剖析与Python实践》的代码(https://github.com/innovation-cat/DeepLearningBook)。第1

深度学习轻松学:核心算法与视觉实践 冯超著 PDF下载
编程书籍

深度学习轻松学:核心算法与视觉实践 冯超著 PDF下载

357次浏览 0条评论

《深度学习轻松学:核心算法与视觉实践》介绍了深度学习基本算法和视觉领域的应用实例。书中以轻松直白的语言,生动详细地介绍了深层模型相关的基础知识,并深入剖析了算法的原理与本质。同时,书中还配有大量案例与源码,帮助读者切实体会深度学习的核心思想和精妙之处。除此之外,书中还介绍了深度学习在视觉领域的应用,从原理层面揭示其思路思想,帮助读者在此领域中夯实技术基础。《深度学习轻松学:核心算法与视觉实践》十分适合对深度学习感兴趣,希望对深层模型有较深入了解的读者阅读。1 机器学习与深度学习的概念1 1.1 什么是机器学习 1 1.1.1 机器学习的形式. 2 1.1.2 机器学习的几个组成部分. 8 1.2 深度学习的逆袭 9 1.3 深层模型在视觉领域的应用. 13 1.4 本书的主要内容 15 1.5 总结. 17 2 数学与机器学习基础18 2.1 线性代数基础. 18 2.2 对称矩阵的性质 22 2.2.1 特征值与特征向量 22 2.2.2 对称矩阵的特征值和特征向量 23 2.2.3 对称矩阵的对角化 24 2.3 概率论. 25 2.3.1 概率与分布. 25 2.3.2 最大似然

深度学习:21天实战Caffe 赵永科著 PDF下载
编程书籍

深度学习:21天实战Caffe 赵永科著 PDF下载

408次浏览 0条评论

《深度学习:21天实战Caffe》是一本深度学习入门读物。以目前已经大量用于线上系统的深度学习框架Caffe为例,由浅入深,从 Caffe 的配置、部署、使用开始学习,通过阅读 Caffe 源码理解其精髓,加强对深度学习理论的理解,最终达到熟练运用 Caffe 解决实际问题的目的。和国外机器学习、深度学习大部头著作相比,《深度学习:21天实战Caffe》偏重动手实践,将难以捉摸的枯燥理论用浅显易懂的形式表达,透过代码揭开其神秘面纱,更多地贴近实际应用。上篇 初见 第1天 什么是深度学习 2 1.1 星星之火,可以燎原 3 1.2 师夷长技 4 1.2.1 谷歌与微软 4 1.2.2 Facebook、亚马逊与NVIDIA 5 1.3 中国崛起 6 1.3.1 BAT在路上 6 1.3.2 星光闪耀 7 1.3.3 企业热是风向标 8 1.4 练习题 9 第2天 深度学习的过往 10 2.1 传统机器学习的局限性 10 2.2 从表示学习到深度学习 11 2.3 监督学习 12 2.4 反向传播算法 13 2.5 卷积神经网络 15 2.6 深度学习反思 17 2.7 练习题 18 2.

百面机器学习:算法工程师带你去面试 诸葛越著 PDF下载
编程书籍

百面机器学习:算法工程师带你去面试 诸葛越著 PDF下载

342次浏览 0条评论

人工智能领域正在以超乎人们想象的速度发展,本书赶在人工智能彻底占领世界之前完成编写,实属万幸。书中收录了超过100道机器学习算法工程师的面试题目和解答,其中大部分源于Hulu算法研究岗位的真实场景。本书从日常工作、生活中各种有趣的现象出发,不仅囊括了机器学习的基本知识 ,而且还包含了成为出众算法工程师的相关技能,更重要的是凝聚了笔者对人工智能领域的一颗热忱之心,旨在培养读者发现问题、解决问题、扩展问题的能力,建立对机器学习的热爱,共绘人工智能世界的宏伟蓝图。“不积跬步,无以至千里”,本书将从特征工程、模型评估、降维等经典机器学习领域出发,构建一个算法工程师必-备的知识体系;见神经网络、强化学习、生成对抗网络等新科研进展之微,知深度学习领域胜败兴衰之著;“博观而约取,厚积而薄发”,在末一章为读者展示生活中各种引领时代的人工智能应用。推荐序 前言 机器学习算法工程师的自我修养 第1章 特征工程 第1节 特征归一化 第2节 类别型特征 第3节 高维组合特征的处理 第4节 组合特征 第5节 文本表示模型 第6节 Word2Vec 第7节 图像数据不足时的处理方法 第2章 模型评估 第1节 评估

深度学习框架PyTorch:入门与实践  陈云著 PDF下载
编程书籍

深度学习框架PyTorch:入门与实践 陈云著 PDF下载

459次浏览 0条评论

《深度学习框架PyTorch:入门与实践》从多维数组Tensor开始,循序渐进地带领读者了解PyTorch各方面的基础知识。结合基础知识和前沿研究,带领读者从零开始完成几个经典有趣的深度学习小项目,包括GAN生成动漫头像、AI滤镜、AI写诗等。《深度学习框架PyTorch:入门与实践》没有简单机械地介绍各个函数接口的使用,而是尝试分门别类、循序渐进地向读者介绍PyTorch的知识,希望读者对PyTorch有一个完整的认识。《深度学习框架PyTorch:入门与实践》内容由浅入深,无论是深度学习的初学者,还是第一次接触PyTorch的研究人员,都能在学习本书的过程中快速掌握PyTorch。即使是有一定PyTorch使用经验的用户,也能够从本书中获得对PyTorch不一样的理解。1 PyTorch简介 1.1 PyTorch的诞生 1.2 常见的深度学习框架简介 1.2.1 Theano 1.2.2 TensorFlow 1.2.3 Keras 1.2.4 Caffe/Caffe2 1.2.5 MXNet 1.2.6 CNTK 1.2.7 其他框架 1.3 属于动态图的未来 1.4 为什么选

图灵原创 卷积神经网络的Python实现 单建华著 PDF下载
编程书籍

图灵原创 卷积神经网络的Python实现 单建华著 PDF下载

472次浏览 0条评论

卷积神经网络是深度学习最重要的模型之一,本书作为该领域的入门读物,假定读者的机器学习知识为零,并尽可能少地使用数学知识,从机器学习的概念讲起,以卷积神经网络的最新发展结束。本书首先简单介绍了机器学习的基本概念,详细讲解了线性模型、神经网络和卷积神经网络模型,然后介绍了基于梯度下降法的优化方法和梯度反向传播算法,接着介绍了训练网络前的准备工作、神经网络及卷积神经网络实战和卷积神经网络的发展。针对每个关键知识点,书中给出了基于 NumPy 的代码实现以及完整的神经网络和卷积神经网络代码实现,方便读者训练网络和查阅代码。本书既可以作为卷积神经网络的教材,也可以供对卷积神经网络感兴趣的工程技术人员和科研人员参考。第一部分 模型篇 第1章 机器学习简介  2 1.1 引言  2 1.2 基本术语  3 1.3 重要概念  5 1.4 图像分类  12 1.5 MNIST数据集简介  15 第2章 线性分类器  17 2.1 线性模型  17 2.1.1 线性分类器  18 2.1.2 理解线性分类器  19 2.1.3 代码实现  21 2.2 softmax损失函数  22 2.2.1 损失函

图灵程序设计丛书《精通机器学习:基于R(第2版)》高清文字版PDF下载
编程书籍

图灵程序设计丛书《精通机器学习:基于R(第2版)》高清文字版PDF下载

255次浏览 0条评论

机器学习是近年来的热门技术话题,R语言是处理其中大量数据的有力工具。本书为读者提供机器学习和R语言的坚实算法基础和业务基础,内容包括机器学习基本概念、线性回归、逻辑回归和判别分析、线性模型的高级选择特性、K最近邻和支持向量机等,力图平衡实践中的技术和理论两方面。第1章 成功之路  1 1.1 流程  1 1.2 业务理解  2 1.2.1 确定业务目标  3 1.2.2 现状评估  4 1.2.3 确定分析目标  4 1.2.4 建立项目计划  4 1.3 数据理解  4 1.4 数据准备  5 1.5 建模  5 1.6 评价  6 1.7 部署  6 1.8 算法流程图  7 1.9 小结  10 第2章 线性回归:机器学习基础技术  11 2.1 单变量回归  11 2.2 多变量线性回归  18 2.2.1 业务理解  18 2.2.2 数据理解和数据准备  18 2.2.3 模型构建与模型评价  21 2.3 线性模型中的其他问题  30 2.3.1 定性特征  30 2.3.2 交互项  32 2.4 小结  34 第3章 逻辑斯蒂回归与判别分析  35 3.1 分类方法与

深度学习框架PyTorch:入门与实践 陈云著 PDF下载
编程书籍

深度学习框架PyTorch:入门与实践 陈云著 PDF下载

378次浏览 0条评论

《深度学习框架PyTorch:入门与实践》从多维数组Tensor开始,循序渐进地带领读者了解PyTorch各方面的基础知识。结合基础知识和前沿研究,带领读者从零开始完成几个经典有趣的深度学习小项目,包括GAN生成动漫头像、AI滤镜、AI写诗等。《深度学习框架PyTorch:入门与实践》没有简单机械地介绍各个函数接口的使用,而是尝试分门别类、循序渐进地向读者介绍PyTorch的知识,希望读者对PyTorch有一个完整的认识。《深度学习框架PyTorch:入门与实践》内容由浅入深,无论是深度学习的初学者,还是第一次接触PyTorch的研究人员,都能在学习本书的过程中快速掌握PyTorch。即使是有一定PyTorch使用经验的用户,也能够从本书中获得对PyTorch不一样的理解。1 PyTorch简介 1.1 PyTorch的诞生 1.2 常见的深度学习框架简介 1.2.1 Theano 1.2.2 TensorFlow 1.2.3 Keras 1.2.4 Caffe/Caffe2 1.2.5 MXNet 1.2.6 CNTK 1.2.7 其他框架 1.3 属于动态图的未来 1.4 为什么选

大数据智能:互联网时代的机器学习和自然语言处理技术 刘知远著 PDF下载
编程书籍

大数据智能:互联网时代的机器学习和自然语言处理技术 刘知远著 PDF下载

428次浏览 0条评论

《大数据智能——互联网时代的机器学习和自然语言处理技术》是一本介绍大数据智能分析的科普书籍,旨在让更多的人了解和学习互联网时代的机器学习和自然语言处理技术,以期让大数据技术更好地为我们的生产和生活服务。《大数据智能——互联网时代的机器学习和自然语言处理技术》包括大数据智能基础和大数据智能应用两个部分,共8 章。大数据智能基础部分有三章:第1 章以深度学习为例介绍大数据智能的计算框架;第2 章以知识图谱为例介绍大数据智能的知识库;第3 章介绍大数据的计算处理系统。大数据智能应用部分有5 章:第4 章介绍智能问答,第5 章介绍主题模型,第6 章介绍个性化推荐,第7 章介绍情感分析与意见挖掘,第8 章介绍面向社会媒体内容的分析与应用。最后在《大数据智能——互联网时代的机器学习和自然语言处理技术》的后记部分为读者追踪大数据智能的最新学术材料提供了建议。《大数据智能——互联网时代的机器学习和自然语言处理技术》适合作为高等院校计算机相关专业的研究生学习参考资料,也适合电脑爱好者阅读。作者特别希望本书能够帮助所有愿意对大数据技术有所了解,以及想要将大数据技术应用于本职工作的读者。第1 章 深度学习—

图灵程序设计丛书《Python数据科学手册》高清文字版PDF下载
编程书籍

图灵程序设计丛书《Python数据科学手册》高清文字版PDF下载

480次浏览 0条评论

本书是对以数据深度需求为中心的科学、研究以及针对计算和统计方法的参考书。本书共五章,每章介绍一到两个Python数据科学中的重点工具包。首先从IPython和Jupyter开始,它们提供了数据科学家需要的计算环境;第2章讲解能提供ndarray对象的NumPy,它可以用Python高效地存储和操作大型数组;第3章主要涉及提供DataFrame对象的Pandas,它可以用Python高效地存储和操作带标签的/列式数据;第4章的主角是Matplotlib,它为Python提供了许多数据可视化功能;第5章以Scikit-Learn为主,这个程序库为最重要的机器学习算法提供了高效整洁的Python版实现。本书适合有编程背景,并打算将开源Python工具用作分析、操作、可视化以及学习数据的数据科学研究人员。译者序 xiii 前言 xv 第1 章 IPython:超越Python 1 1.1 shell还是Notebook 1 1.1.1 启动IPython shell 2 1.1.2 启动Jupyter Notebook 2 1.2 IPython的帮助和文档 3 1.2.1 用符号? 获取文档

图灵程序设计丛书《Python计算机视觉编程》高清文字版PDF下载
编程书籍

图灵程序设计丛书《Python计算机视觉编程》高清文字版PDF下载

544次浏览 1条评论

《python计算机视觉编程》是计算机视觉编程的权威实践指南,依赖python语言讲解了基础理论与算法,并通过大量示例细致分析了对象识别、基于内容的图像搜索、光学字符识别、光流法、跟踪、三维重建、立体成像、增强现实、姿态估计、全景创建、图像分割、降噪、图像分组等技术。另外,书中附带的练习还能让读者巩固并学会应用编程知识。《python计算机视觉编程》适合的读者是:有一定编程与数学基础,想要了解计算机视觉的基本理论与算法的学生,以及计算机科学、信号处理、物理学、应用数学和统计学、神经生理学、认知科学等领域的研究人员和从业者。《python计算机视觉编程》 推荐序 xi 前言 xiii 第1章 基本的图像操作和处理 1 1.1 pil:python图像处理类库 1 1.1.1 转换图像格式 2 1.1.2 创建缩略图 3 1.1.3 复制和粘贴图像区域 3 1.1.4 调整尺寸和旋转 3 1.2 matplotlib 4 1.2.1 绘制图像、点和线 4 1.2.2 图像轮廓和直方图 6 1.2.3 交互式标注 7 1.3 numpy 8 1.3.1 图像数组表示 8 1.3.2 灰度变换

图灵程序设计丛书《机器学习实战》高清文字版PDF下载
编程书籍

图灵程序设计丛书《机器学习实战》高清文字版PDF下载

327次浏览 0条评论

机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中萃取有价值的信息或模式,成为各行业求生存、谋发展的决定性手段,这使得这一过去为分析师和数学家所专属的研究领域越来越为人们所瞩目。本书第一部分主要介绍机器学习基础,以及如何利用算法进行分类,并逐步介绍了多种经典的监督学习算法,如k近邻算法、朴素贝叶斯算法、Logistic回归算法、支持向量机、AdaBoost集成方法、基于树的回归算法和分类回归树(CART)算法等。第三部分则重点介绍无监督学习及其一些主要算法:k均值聚类算法、Apriori算法、FP-Growth算法。第四部分介绍了机器学习算法的一些附属工具。全书通过精心编排的实例,切入日常工作任务,摒弃学术化语言,利用高效的可复用Python代码来阐释如何处理统计数据,进行数据分析及可视化。通过各种实例,读者可从中学会机器学习的核心算法,并能将其运用于一些策略性任务中,如分类、预测、推荐。另外,还可用它们来实现一些更高级的功能,如汇总和简化等。目 录 第一部分 分类 第1章 机器学习基础  2 1.1  何谓机器学习  3 1.1.1  传感

数据挖掘十大算法 吴信东等著 PDF下载
编程书籍

数据挖掘十大算法 吴信东等著 PDF下载

443次浏览 0条评论

《世界著名计算机教材精选:数据挖掘十大算法》详细介绍了在实际中用途最广、影响最大的十种数据挖掘算法,这十种算法是数据挖掘领域的顶级专家进行投票筛选的,覆盖了分类、聚类、统计学习、关联分析和链接分析等重要的数据挖掘研究和发展主题。《世界著名计算机教材精选:数据挖掘十大算法》对每一种算法都进行了多个角度的深入剖析,包括算法历史、算法过程、算法特性、软件实现、前沿发展等,此外,在每章最后还给出了丰富的习题和精挑细选的参考文献,对于读者掌握算法基本知识和进一步研究都非常有价值,对数据挖掘、机器学习和人工智能等学科的课程的设计有指导意义。第1章C4.5 1 1.1引言2 1.2算法描述3 1.3算法特性6 1.3.1决策树剪枝6 1.3.2连续型属性8 1.3.3缺失值处理8 1.3.4规则集诱导9 1.4软件实现10 1.5示例10 1.5.1 Golf数据集10 1.5.2 Soybean数据集11 1.6高级主题11 1.6.1二级存储12 1.6.2斜决策树12 1.6.3特征选择12 1.6.4集成方法12 1.6.5分类规则13 1.6.6模型重述13 1.7习题14 参考文献15

图灵程序设计丛书《图解机器学习》PDF下载
编程书籍

图灵程序设计丛书《图解机器学习》PDF下载

827次浏览 0条评论

本书用丰富的图示,从最小二乘法出发,对基于最小二乘法实现的各种机器学习算法进行了详细的介绍。第Ⅰ部分介绍了机器学习领域的概况;第Ⅱ部分和第Ⅲ部分分别介绍了各种有监督的回归算法和分类算法;第Ⅳ部分介绍了各种无监督学习算法;第Ⅴ部分介绍了机器学习领域中的新兴算法。书中大部分算法都有相应的MATLAB程序源代码,可以用来进行简单的测试。本书适合所有对机器学习有兴趣的初学者阅读。187张图解轻松入门提供可执行的Matlab程序代码覆盖机器学习中最经典、用途最广的算法专业实用东京大学教授、机器学习权威专家执笔,浓缩机器学习的关键知识点图文并茂187张图示帮助理解,详略得当,为读懂大部头开路。角度新颖基于最小二乘法讲解各种有监督学习的回归和分类算法,以及无监督学习算法。实战导向配有可执行的MATLAB程序代码,边学习边实践。第I部分 绪 论 第1章 什么是机器学习 2 1.1 学习的种类 2 1.2 机器学习任务的例子 4 1.3 机器学习的方法 8 第2章 学习模型 12 2.1 线性模型 12 2.2 核模型 15 2.3 层级模型 17 第II部分 有监督回归 第3章 最小二乘学习法 22

美团机器学习实践 PDF下载
编程书籍

美团机器学习实践 PDF下载

456次浏览 0条评论

人工智能技术正以一种超快的速度深刻地改变着我们的生活,引导了第四次工业革命。美团作为国内O2O领域领 先的服务平台,结合自身的业务场景和数据,积极进行了人工智能领域的应用探索。在美团的搜索、推荐、计算广告、风控、图像处理等领域,相关的人工智能技术得到广泛的应用。本书包括通用流程、数据挖掘、搜索和推荐、计算广告、深度学习以及算法工程6大部分内容,全面介绍了美团在多个重要方面对机器学习的应用。本书非常适合有一定机器学习基础的工程技术人员和在校大学生学习和阅读。通过本书,有经验的算法工程师可以了解美团在这方面的做法,在校大学生可以学习机器学习算法如何在具体的业务场景中落地。第一部分 通用流程 第 1章 问题建模 2 1.1 评估指标 3 1.1.1 分类指标 4 1.1.2 回归指标 7 1.1.3 排序指标 9 1.2 样本选择 10 1.2.1 数据去噪 11 1.2.2 采样 12 1.2.3 原型选择和训练集选择 13 1.3 交叉验证 14 1.3.1 留出法 14 1.3.2 K折交叉验证 15 1.3.3 自助法 16 参考文献 17 第 2章 特征工程 18 2.1 特征提取

慕课网 Python机器学习启蒙视频教程下载
视频教程

慕课网 Python机器学习启蒙视频教程下载

567次浏览 0条评论

第一章 机器学习概述第二章 回归模型第三章 分类模型第四章 聚类和相似度模型第五章 推荐系统第六章 深度学习机器学习启蒙讲师源码机器学习数据素材机器学习启蒙源码数据集